Refereed Papers

2021

  1. Tomoei Takahashi, George Chikenji, and Kei Tokita
    "Lattice protein design using Bayesian learning"
    Physical Review E 104, 014404 (Published 8 July, 2021)
    arXiv:2003.06601
    Nagoya University Press Release (In Japanese)

2022

  1. [in Japanese & in print only] 高橋智栄, 千見寺浄慈, 時田恵一郎
    「ベイズ学習による格子タンパク質模型のデザイン」
    学会誌「シミュレーション」, 最先端研究, Vol. 41, No.3, pp.30-35, 2022
    (2022年9月号).
  2. Tomoei Takahashi, George Chikenji, and Kei Tokita
    "The cavity method to protein design problem"
    Jounal of Statistical Mechanics: Theory and Experiment,103403 (Published 12 October, 2022)
    arXiv:2205.03696
    Nagoya University Press Release (In Japanese)

2025

  1. [in Japanese] 高橋智栄, 千見寺浄慈, 時田恵一郎
    「タンパク質デザインの統計力学」
    日本物理学会誌 最近の研究から Vol 80, No. 3, pp.116-120, 2025
    DOI: 10.11316/butsuri.80.3_116 (2025年3月号).
  2. Tomoei Takahashi, George Chikenji, Kei Tokita, and Yoshiyuki Kabashima
    "Alpha helices are more evolutionarily robust to environmental perturbations than beta sheets: Bayesian learning and statistical mechanics for protein evolution"
    Physical Review Research 7, 023115 (Published 5 May, 2025)
    arXiv:2409.03297